Effects of Scanning Schemes on Laser Tube Bending

نویسندگان

  • Jie Zhang
  • Peng Cheng
  • Wenwu Zhang
  • Michael Graham
  • Jerry Jones
  • Marshall Jones
  • Lawrence Yao
چکیده

Four laser scanning schemes for tube bending, including point-source circumferential scanning, pulsed line-source axial procession, and line-source axial scanning without and with water cooling are investigated in numerical simulation. The coupled thermomechanical model established using the finite element method is validated and applied to predict the bending deformation and help better understand bending mechanisms under different schemes. The influence of important parameters such as beam coverage, scanning velocity and cooling offset on the deformation is investigated in detail. Parametric studies are carried out to determine proper processing windows at which the largest bending can be obtained. The deformation characteristics, including the wall thickness variation and the cross-section distortion produced by different scanning schemes are analyzed, along with the processing efficiency. DOI: 10.1115/1.2113047

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Cooling on Bending Angle and Microstructure in Laser Tube Bending with Circumferential Scanning

Laser tube bending is a flexible forming process. Two irradiation methods of axial and circumferential scanning are generally used to form metal tubes. The two most important disadvantages of circumferential scanning are its lower bending angle and the time interval required between each scan for cooling purpose. In this research, a novel cooling strategy during laser tube bending with circumfe...

متن کامل

A Study on the Laser Tube Bending Process: Effects of the Irradiating Length and the Number of Irradiating Passes

In this paper, the laser bending process of a circular tube made of mild steel has been investigated experimentally. For this purpose, the effects of the irradiating length and the number of irradiating passes on the main bending angle of a laser bent tube are studied. In addition, the main defects of the laser tube bending process such as lateral bending angle, ovality and thickness variation ...

متن کامل

The Effect of Normal Anisotropy on Thin-Walled Tube Bending

Thin-walled tube bending has common applications in the automobile and aerospace industries. The rotary-draw-bending method is a complex physical process with multi-factor interactive effects and is one of the advanced tube forming processes with high efficiency, high forming precision, low consumption and good flexibility for bending angle changes. However, it may cause a wrinkling phenomenon,...

متن کامل

Effects of temperature gradient magnitude on bending angle in laser forming process of aluminium alloy sheets

Laser forming is a thermal forming process which uses laser beam irradiation to produce the desired final forms. In this article, the effect of temperature gradient across  Al 6061-T6 aluminum sheets on bending angle is studied. Input parameters including laser power, scan velocity, beam diameter, and sheet thickness are the effective process parameters which influence the temperature gradient....

متن کامل

Analysis of pressure distribution and optimization of working conditions during push bending of circular tubes

Thin-walled tube bending is still to be considered a new and advanced technique. The process has been adopted into several industries such as aero and automotive. This process may produce a wrinkling, bulking and tearing phenomenon if the process parameters are inappropriate, especially for tubes with large diameter and thin wall thickness. Push bending process is one of the methods used for be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004